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Abstract

Recent regulatory changes have fragmented the trading of financial securities, giving

rise to the emergence of “global”dealers, that is, intermediaries making the market simul-

taneously across more than one trading venue. We develop an inventory model in which

two risk-averse global dealers compete to absorb part or the totality of an order flow

that fragments between two venues. We show that fragmentation may lead to a better

allocation of risks among dealers, which may result in lower transaction costs. We also

show that bid-ask spreads in a venue depend on the sign and size of the order flow routed

to the other venue. We test these predictions using proprietary data from Euronext on

multi-listed firms. First, we document the existence of a pool of traders who split their

liquidity supply across the different order books, and we find that market spreads are

significantly impacted by the divergence of dealers’ global inventory. Second, we show

that market spreads are significantly related to the size and the direction of order flow

routed to the other venue, consistently with our predictions.
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1 Introduction

In the last decade, falling technology costs and changes in regulation both in the U.S.

(RegNMS) and in Europe (MiFID) have fostered the proliferation of alternative trading

venues, giving rise to the emergence of “global”dealers, that is, intermediaries making the

market simultaneously across more than one trading venue. Getco for instance trades

NYSE-listed securities in ARCA, GETMATCHED, BATS-Z, NYSE, EDGA, NASDAQ,

BATS-Y, BX, LIGHTPOOL, and DEUTSCHE BANK. Recent empirical evidence (e.g.

Menkveld, 2012, Brogaard, 2011, Jovanovic and Menkveld, 2011, van Kervel, 2012) further

shows that high frequency traders, namely financial institutions which have invested in

high speed capacity, informally undertake this role by engaging in market making across

different electronic trading venues. In this paper, we develop an inventory model to

analyze how competing dealers strategically supply liquidity across multiple markets. We

then test the predictions of our model using a proprietary dataset from Euronext on multi-

traded stocks, in which we can identify financial institutions involved in multi-market

market making.

Intuitively, fragmentation promotes price competition and a potential sharing of the

order flow creates room for a better allocation of risks among dealers, which may induce

them to post more aggressive prices. Conversely, the opportunity to share order flow

may also enable dealers to specialize in one market, which lowers their incentives to post

aggressive prices. We formalize this intuition using an inventory model based on Ho and

Stoll (1983), in which order flow fragments between two trading venues. Two risk averse

dealers have to simultaneously post prices to absorb the incoming fraction of the order

flow in both markets. We introduce an asymmetry by assuming that the venue termed as

the dominant market receives a larger portion of the order flow than the alternative venue

termed as the satellite market. For the ease of exposition, we assume that the part sent

to the dominant market is net buying, while the part sent to the satellite market may be

either net-buying or net-selling.

We show that the execution of the order flow may remain fragmented if each dealer

executes only one part of the fragmented order flow (“sharing”). It may also be the case

that a single dealer executes the total fragmented order flow (“consolidation”). This result

depends on whether order flows sent to the dominant and the satellite market have the
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same sign or not, and on how divergent the dealers’ inventory positions are from each

other.

When order flows have the same sign, a dealer faces a “dual liability risk”: in case his

quotes are hit, the dealer executes a cumulated buy transaction. We could have expected

a premium due to this additional risk, leading to larger spreads. This may not be the

case. Actually, the dealer consolidates the fragmented order flow by posting competitive

quotes when her inventory position is extreme relative to her opponent. In this case,

executing the total order flow is desirable to reduce her inventory exposure. When her

inventory position is close to her opponent, she may choose to execute only the part of

the fragmented order flow which best reduces her inventory risk, thus specializing in one

market.

By contrast, when order flow have opposite signs, the longer dealer consolidates the

fragmented order flow only when her inventory position is close to her opponent. The

cumulated transaction in both market creates an “offsetting”effect, which may not be

desirable. For instance, when the dealer is in an extreme long position relative to the

other, she is reluctant to add more inventory by executing an incoming sell order. She

will thus post attractive competitive prices only in the market receiving the buy order

flow to reduce her inventory exposure. Conversely, when dealers’ inventory positions are

close, dealers are less able to post very competitive prices. In particular, if the total order

flow is net buying, the dealer with the longer position, but close to her opponent, prefers

to execute orders with a small price impact, and thus prefers to trade the total fragmented

order flow to benefit from the offsetting effect.

Overall we show that our results depend strongly on the possibility of dealers to

compete only on one part of the order flow, through the existence of multiple venues. In

our set up, fragmentation surprisingly may lead to lower expected spreads compared to

the case when order flow consolidates in a single market (Ho and Stoll, 1983).

The model yields crisp predictions about the average spreads in the presence of mul-

tiple venues: expected spreads in one venue vary with the simultaneity, the size, the

sign, and the interaction between the sign and the size of the order flow routed to the

alternative venue.

We test these predictions using a proprietary dataset on multi-traded stocks from

Euronext on a four-month period in 2007. When Euronext was created in 2000 as a
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result of the merger of three European Stock Exchanges, namely Paris, Brussels and

Amsterdam, the stocks which used to be multi-listed in different Exchanges for various

reasons fell into the Euronext jurisdiction. Within Euronext, trading rules in all markets

have been harmonized and structured on the Paris Bourse limit order book model, while

remaining separated order books with price-time priority enforced within each market,

but not across markets, until 2009. Besides, during that period (that is, before the

implementation of MiFID in November 2007), Euronext was virtually collecting all the

trades.1 For these reasons, Euronext provides an excellent laboratory, in line with our

theoretical framework, to test our predictions. In our dataset, orders and trades sent to

or executed in any limit order book are flagged with a unique ID code and the account

used by the financial institution. This enables us to identify 42 global dealers, that is,

members acting either as proprietary traders or as exchange-regulated market makers,

and who trade at least once every month in each of the two exchanges on which the stock

is traded. Due to the supremacy of Euronext, our reconstitution of dealers’ end-of-day

positions, that accounts for their trades in all the limit order books of Euronext, is a good

proxy for dealers’ global inventories. Our empirical analysis investigates the link between

the behavior of these global dealers, and market liquidity. We first document that the

more divergent the inventories across members (i.e., the higher the standard deviation

of relative inventories), the more competitive the quotes they place, and the smaller the

spreads. This result suggests that inventory risk premia may be a significant component

of spreads in limit order markets. We also find that the size of the order flow sent to the

dominant market significantly impacts the spreads in the satellite market. Finally, we

show that the impact of the sign of order flows correlation is statistically significant on

spreads. These results are consistent with the predictions of our inventory model across

venues. This suggests that global dealers consolidate fragmented markets through their

inventory management.

Our empirical analysis is motivated by a new theoretical approach to multi-market

trading. Traditional models including Pagano, 1989, Chowdry and Nanda, 1991, Bern-

hardt and Hughson, 1997, Easley, Kiefer and O’Hara, 1996, and Foucault and Menkveld,

2008 assume that quotes are competitively set by independent pools of Bayesian market

1For instance, Gresse, 2012 or Degryse, De Jong, and van Kervel, 2011 report a market share of more
than 95% for French and Dutch stocks respectively over our sample period.
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makers in multiple markets to satisfy the zero-profit condition. They focus on the routing

or order splitting decisions of strategic liquidity demanders, who can either be informed

or not. Naturally, these strategies are anticipated by the liquidity suppliers who adjust

their quotes in the different markets according to their beliefs. We instead exogenously fix

order flows routed towards each market to focus on the inter-dependent quoting strategies

of market makers in multiple markets. As Seppi, 1997 and Parlour and Seppi, 2003, we

model competition for order flow based on liquidity provision when liquidity suppliers are

not perfectly competitive. Parlour and Seppi, 2003 extend the model proposed by Seppi,

1997 to analyze the quotes set by a monopolist specialist competing against a competitive

order book, and incorporate liquidity demander’s optimal splitting. The specialist has a

timing advantage over the value traders who post limit orders in the limit order book.

In contrast, the market makers in our model post their quotes simultaneously. We show

that risk averse liquidity suppliers using multi-market strategies correlate the best quotes

in multiple trading venues, even in the absence of private information.

Few empirical papers focus on the extent to which traders exploit multi-market en-

vironments. Menkveld, 2008 and Halling, Moulton, and Panayides, 2013 focus on how

investors adjust their trading strategies to multi-trading. In contrast, we investigate how

liquidity suppliers deal with a multi-market environment, and our empirical analysis is

most closely related to van Kervel, 2012, and Jovanovic and Menkveld, 2011. van Kervel,

2012 finds that trades on the most active venues for 10 FTSE100 stocks are often followed

by immediate cancellations of limit orders on competing venues, which would be expected

in the presence of a global dealers facing a dual liability risk. Jovanovic and Menkveld,

2011 statistically identify a global dealer actively trading across Euronext and Chi-X,

and find that the participation of this dealer has an impact on spreads and volumes.

Both findings are in line with our theoretical predictions and complement our empirical

analysis. Each institution in our sample is identified by a unique ID across the multiple

limit order books of Euronext. Empirically, this enables us to deepen the analysis and to

precisely analyze the quoting strategies of all the members who exploit the multi-market

environment.

The paper is organized as follows. Section 2 describes the model. Section 3 investigates

the price formation when order flow fragments between two venues and derives some

empirical predictions. Section 4 describes the data, provides summary statistics and tests
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the main prediction. Section 5 concludes the paper.

2 The Model

The objective is to examine how the presence of two competing trading venues influences

dealers’ quoting strategy.

2.1 The basic setting

We consider the market for a risky asset, whose final cash flow is a normal random variable

ṽ characterized by an expected value µ and a variance σ2. There are two types of market

participants: investors who demand liquidity and dealers who supply liquidity. Liquidity

is exogenously demanded by investors who submit market orders. Liquidity is supplied

by risk-averse dealers who stand ready to execute incoming market orders at their bid or

ask quote against their own inventory.

2.1.1 Dealers’ reservation price and inventory holding cost

We focus on the behavior of two strategic dealers who compete to post the most com-

petitive price so as to execute incoming order flow. Dealers 1 and 2 have the following

common CARA utility function:

u (w) = − exp(−ρw), (1)

where ρ is the risk aversion, and w the terminal wealth of a dealer.

Dealers differ in their (random) inventory position of the risky asset, Ĩi. Accord-

ingly, dealers have heterogeneous reservation prices, defined by equating expected utilities

EU(Q, ri) = EU(0, ri), where U(Q, ri) indicates that dealer in position Ii trades Q shares

at price ri. It follows that:2

ri (Q) = µ+
ρσ2

2
(Q− 2Ii) , i = 1, 2, (2)

where Q is the incoming signed order flow to accommodate, and Ii is the realization of the

2This result follows Ho and Stoll’s (1983) Proposition 1.
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random variable Ĩi uniformly distributed on [Id, Iu]. We suppose that Q > 0 when it is a

buy incoming order flow, while Q < 0 when it is a sell incoming order flow.3 Consider that

(µ − ρσ2Ii) is the marginal valuation of dealer i for the risky asset, as in Biais, Glosten

and Spatt (2005). Note that the marginal valuation depends on the risk for dealer i of

holding an inventory position. Hence, a dealer in a long position is reluctant to increase

his exposure to inventory risk by adding more inventory and posts relatively low ask and

bid prices to encourage selling operations. The second component of reservation prices

((ρσ2/2)Q) represents the price impact of trades and, thus, is increasing in trade size:

larger buy orders will drive dealer i’ selling price more above dealer i’s marginal valuation

(and vice versa). Note also that we can, equivalently, consider that the reservation price

ri (Q) is a uniform random variable defined on [ru (Q) , rd (Q)]. All random variables are

independent and their distributions are common knowledge.

2.1.2 Fragmentation of the order flow

We suppose that the order flow may be routed to two different venues, denoted D and

S. The part sent to venue D, denoted QD, is larger than that sent to venue S, i.e.

|QD| > |QS|. Due to this asymmetry, we term market D as the dominant market, and

market S as the satellite market. We restrict our analysis to the case where order flow

sent to D is a buy order flow, QD ≥ 0, while QS might be either sell or buy order flow:

QS ≥ 0 or QS ≤ 0.4

2.1.3 The timing of the game and dealers’ payoffs

At date 1, dealer i is endowed with an initial inventory position Ii. At date 2, some

liquidity traders send their order flow to venue D while some others send their order flow to

venue S. At date 3 and conditional on observing QD and QS, dealers post simultaneously

their quotes in venues D to execute QD and in S to execute QS. The dealer who posts the

lowest ask price in venue D executes QD, while the dealer with the lowest ask (respectively

the highest bid) in market S executes QS > 0 (resp. QS < 0), depending on the sign of

the order flow sent to venue S.

3Note that ri = µ− ρσ2

2 (−Q+ 2Ii) when Q < 0.
4Our predictions are derived from a net-buying order flow (QD + QS > 0). Symmetric results are

obtained for a net-selling order flow.
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As in Biais (1993), the utility function of dealers given in (1) is linearized5, under the

assumption QD < Iu − Id.6 Reservation prices however depend on risk aversion.

Let us denote ami (resp. bmi ) the ask (resp. bid) price set by dealer i ∈ {1, 2} in market

m ∈ {D,S}. Then, when QS > 0, dealer i’s trading profit is simply given by:

vi
(
aD1 , a

D
2 , a

S
1 , a

S
2

)
=


aDi QD + aSi QS − ri (QD +QS) (QD +QS) if aDi < aD−i and aSi < aS−i,(

aDi − ri (QD)
)
QD if aDi < aD−i and aSi > aS−i,(

aSi − ri (QS)
)
QS if aDi > aD−i and aSi < aS−i,

0 if aDi > aD−i and aSi > aS−i.

When QS < 0, dealer i’s trading profit is given by:

vi
(
aD1 , a

D
2 , b

S
1 , b

S
2

)
=


aDi QD − bSi |QS| − ri (QD +QS) (QD +QS) if aDi < aD−i and bSi > bS−i,(

aDi − ri (QD)
)
QD if aDi < aD−i and bSi < bS−i,(

ri (QS)− bSi
)
|QS| if aDi > aD−i and bSi > bS−i,

0 if aDi > aD−i and bSi < bS−i.

In this paper, we suppose that dealers observe competitors’ quotes, as if markets were

transparent. This set up was first studied by Ho and Stoll (1983). We also suppose, for

ease of exposition, that the dealer endowed with the longer inventory position is dealer 1,

i.e. I1 > I2.

Figure 1 represents the extensive form of quoting game in market m, conditional on

dealers observing a non-zero order flow sent to this venue. We call λ−m the ex ante

probability with which the order flow sent simultaneously to the alternative market −m
is non-zero, and γ the ex ante probability that simultaneous non-zero order flows have the

same sign.7 We focus on the case where order flows routed to the two venues are non-zero.

The equilibrium strategies when no order flow is routed to the alternative trading venue

are obtained at the limit when Q−m → 0 and are similar to those obtained in standard

inventory models (e.g. Ho and Stoll, 1981, 1983). In the next section, we analyze the two

5For tractability reasons, the direct effect of risk aversion on preferences is removed by using the first
order linear approximation proposed by Biais (1993).

6The assumption QD < Iu − Id also guarantees that dealer i (i = 1, 2) has a probability to post the
best price in market m (m = D,S) which is strictly greater than 0 and strictly lower than 1.

7Assuming that order flows in markets D and S are equally likely to be on the buy or sell side, and
conditional on order flows in both markets being non-zero, the correlation coefficient of order flows is
2γ − 1.
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polar cases, first when order flows have the same sign (e.g. subgame (1+) in Figure 1),

then when they have opposite directions (e.g. subgames (1−) for market D and (3−) for

market S in Figure 1).

3 Equilibrium quotes in fragmented markets

Our model considers that order flow fragments between two trading venues: a net-buy

order is routed to the dominant market, while a smaller (in absolute value) net-buy or

net-sell order is routed to the satellite market. Each dealer must simultaneously choose

an ask quote to execute QD in market D, and either an ask or a bid price to execute QS

in market S. If order flow would consolidate in a single market, we would be back to

the case analyzed by Ho and Stoll (1983), in which the dealer with the longer inventory

position (dealer 1 by assumption) posts the most competitive ask quote, by quoting the

second lowest reservation price ((aHS)∗ = r2(QD + QS) − ε, in our case). This section

analyzes how fragmentation of order flow alters this result.

3.1 Preliminary results

Standard inventory models predict that the dealer endowed with the longer position is

more eager to absorb the net buy order flow (QD +QS). Lemma 1 below shows however

that this dealer might prefer to trade only a part of it and let her competitor trade the

other part.

Lemma 1 Assume that I1 > I2 and that QD +QS > 0.

1. If (I1 − I2 − QD)QS < 0, and if an equilibrium exists, then it is such that dealers

share the fragmented order flow. Conversely, if (I1−I2−QD)QS > 0, and if an equilibrium

exists, then it is characterized by the consolidation of the fragmented order flow.

2. If there exists an equilibrium such that dealers share the order flow, then the longer

dealer executes the larger component QD and the shorter dealer executes the smaller com-

ponent QS of the fragmented order flow. If there exists an equilibrium characterized by

the consolidation of the fragmented order flow, then the longer dealer trades the total

net-buying order flow, QD +QS.
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At equilibrium, either the execution of the order flow remains fragmented if dealers

share it, or it is consolidated when executed by a single dealer. The outcome depends

both on the sign of the order flow sent to market S (relative to that routed to market

D), and on the degree of divergence between dealers’ inventory position. First, when QD

and QS have the same sign, order flows in markets D and S are substitutes: the marginal

gain of trading QD > 0 when the dealer also trades QS > 0 is lower than when he does

not trade QS. Conversely, when order flows have opposite sign, they are complements.8

Another view is to observe that dealers face a cumulative effect when they simultaneously

execute trades of the same sign, and face an offsetting effect when they execute trades of

opposite sign. Because of these complementarity or substitution effects (cumulative vs.

offsetting effects), dealers’ preferences to trade only a part versus the total fragmented

order flow vary with the sign of QS relative to QD.

Second, the degree of divergence between dealers’ inventory expresses the competitive-

ness of dealers’ quotes in both markets and thus dealers’ ability to execute the total order

flow or only a part of it. When the divergence is low (resp. high), dealer 1’s inventory

position is close to (resp. away from) that of dealer 2, and dealers are less (resp. more)

able to post competitive prices.

Note that, in our case, dealer 1, with the longer inventory position, has a decisive

competitive advantage since the order flow (QD +QS) is net-buying, whatever the sign of

the component sent to the satellite market. She will thus try to trade the fraction of the

order flow that best reduces her inventory exposure, i.e. QD. When her inventory position

is more extreme (I1− I2 > QD), dealer 1 would rather execute at least the largest portion

of the fragmented order flow (i.e., QD). When the divergence between dealers’ inventories

is low (I1−I2 < QD), she would prefer to trade at most QD. To clarify ideas, suppose that

her inventory position is more extreme. If QS > 0, then dealer 1 would prefer to execute

the total order flow in market D and S to benefit from the cumulative effect, while if

QS < 0, she would prefer to trade only QD, and not QS, to avoid the offsetting effect.

Conversely when the divergence of inventories is low, she prefers to avoid the cumulative

effect if QS > 0, but would like to profit from the offsetting effect if QS < 0.

8Generalizing the definition of substitute goods to the case of nonidentical objects as in Krishna (2010)
[Chapter 16, section 16.3 page 230], we will say that the objects being sold or bought are substitutes if
the marginal value of obtaining (resp. selling) a particular object q is smaller if the set of objects already
in hand (resp. sold) is “larger”. Formally, dealer i considers that QD and QS are substitutes if and only
if vi(QD +QS)− vi(QS) ≤ vi(QD)− vi(0). For QD > 0, the inequality holds if and only if QS > 0.
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Finally, note that the characteristics of an equilibrium, if it exists, correspond to

those of the outcome of the Vickrey-Clarke-Groves (VCG) mechanism for combinatorial

auctions.9,10

The sign of the order flow sent to market S influences dealers’ preferences to trade (for

QD > 0 by assumption). We thus analyze separately the cases where QS > 0 or QS < 0

below.

3.2 Order flows have the same sign

In this section we suppose that the order flows routed to both the dominant and the

satellite markets are net-buying, i.e. QD > 0 and QS > 0. Intuitively, dealer 1 with the

longer inventory is in a position to be the first seller in market D or S (Ho and Stoll, 1983).

Due to quote discrimination in multiple markets, dealer 2 has however the opportunity

to post aggressive quotes only in one market. Dealer 1 thus faces a stronger competition

which induces her to post very aggressive ask prices in both markets if she wants to trade

the total fragmented order flow. Depending on her inventory holding costs, it may not be

profitable to post such prices.

Proposition 1 Assume QS > 0. If I1−I2 > QD, there exists a unique Nash equilibrium,

in which the longer dealer is the first seller in both markets. At equilibrium,

(
aD+H

)∗
= r2(QD)− ε,(

aS+H
)∗

= r2(QS)− ε.

If I1 − I2 < QD, there exists a unique Nash equilibrium, in which the longer dealer is

the first seller in the dominant market while the shorter dealer is the first seller in the

9In these auctions, multiple items, which are related but not necessarily identical, are sold simultane-
ously and bidders may submit bids on packages of items. Depending on the relative values bidders assign
to the individual objects or to the bundle, sharing may be efficient.

10To illustrate the VCG mechanism, suppose that there are two items for sale (D and S) and two
bidders. Let us denote by vi(D) bidder i’s value for item D, by vi(S) bidder i’s value for item S, and by
vi(DS) bidder i’s value for the bundle D and S. In this mechanism, if v1(DS) > v1(D) + v2(S), then the
outcome is that bidder 1 wins both items. This condition corresponds to our condition (I1−I2−QD)QS >
0. See Vickrey (1961), Clarke (1971) and Groves (1973) or Ausubel and Milgrom (2006) for a discussion
of the VCG mechanism.
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satellite market. At equilibrium,

(
aD+L

)∗
= r2(QD) + ρσ2QS

(
QD − (I1 − I2)

QD

)
− ε,(

aS+L
)∗

= r1(QS) + ρσ2QD − ε,

where ε corresponds to one tick.

The best quotes in markets D and S are continuous at I1 − I2 = QD, although the

characteristics of the equilibrium (consolidation versus sharing) depend on the sign of

(I1 − I2 −QD) (Lemma 1). On the one hand, when the divergence between dealers’

inventory positions is high, namely I1 − I2 > QD, the equilibrium is characterized by the

consolidation of the order flow. The threat of being undercut by dealer 2 in each market

induces dealer 1 to set aggressive prices. Observe indeed that, relative to Ho and Stoll

(1983), the best ask prices in both markets D and S contain a new term with a negative

sign:
(
aD+H

)∗
= aHS − ρσ2

2
QS − ε and

(
aS+H

)∗
= aHS − ρσ2

2
QD − ε.

On the other hand, when the divergence is low (I1 − I2 < QD), dealers share the

fragmented order flow. The inventory position of dealer 1 is not any more extreme relative

to dealer 2’s inventory position, thus she cannot post sufficiently competitive prices to

execute the total order flow. Consider the best ask in market D posted by dealer 1. This

price is equal to the Ho and Stoll price plus a new term denoted ω: (aD+L)∗ = aHS + ωQS

where

ω =
ρσ2

2

(
QD − 2 (I1 − I2)

QD

)
. (3)

This term ω is decreasing with the divergence in dealers’ inventory. When dealers’ in-

ventories are very close (I1 − I2 → 0), they cannot post very different prices from each

other, and competition is weak (ω > 0). When dealers’ inventories are more divergent

(I1 − I2 → QD), dealer 1 is able to post more competitive quotes (ω < 0). A similar

reasoning holds for the best ask in market S: (aS+L)∗ = aHS + ωQD. Note that dealers

obtain a better allocation of risk compared to the Ho and Stoll benchmark in which dealer

1 is forced to execute the total order flow which leads her to a worse risk exposure. This

better allocation of risks does not however necessarily lead to more competitive prices

because dealers have less incentives to undercut each other by posting more aggressive

prices. Sharing might thus allow dealers to post higher prices. This result is similar to
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that obtained in Biais, Foucault, Salanié (1998).

3.3 Order flows have opposite signs

This section analyzes the case where the order flow sent to market D is net-buying QD > 0,

while the order flow sent to market S is net-selling QS < 0. Dealers must choose an ask

price in market D, while they quote a bid price in market S. According to Ho and Stoll

(1983) dealer 1 should be the first seller in market D, while dealer 2 is expected to be

the first buyer in market S. However, the dealer who would simultaneously be the first

seller and the first buyer would benefit from an “offsetting effect”, i.e. the execution of

the total order flow has a smaller inventory impact than the execution of only QD or only

QS.

Proposition 2 Assume that QS < 0. If I1 − I2 > QD, there exists a unique Nash

equilibrium, in which the longer dealer is the first seller in market D and the shorter

dealer is the first buyer in market S. At equilibrium,

(
aD−H

)∗
= r2 (QD)− ρσ2 (−QS)− ε(

bS−H
)∗

= r1 (QS) + ρσ2QD + ε,

If I1 − I2 < QD, there exists a continuum of Nash equilibria in which the longer

dealer is simultaneously the first seller in market D and the first buyer in market S. All

equilibria are such that
(
aD−L

)∗
QD−

(
bS−L
)∗

(−QS) = r2(QD+QS)(QD+QS). Among those

equilibria, we focus on the equilibrium where prices in markets D and S are continuous

when I1 − I2 → QD.

(
aD−L

)∗
= r2(QD)− ρσ2 (−QS)− ε,(

bS−L
)∗

= r2(QS) + ε.

where ε corresponds to one tick.

When I1 − I2 < QD, we select the equilibrium on the criteria of price continuity

at I1 − I2 = QD. Other equilibria exist, in which a higher bid price in market S is

compensated by a lower ask price in market D, but dealers’ profits and the average half-
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spread paid by investors are not impacted by this choice: the average price at which

(QD +QS) is executed is r2 (QD +QS).

When the divergence between dealers’ inventory positions is high (I1 − I2 > QD), the

equilibrium is characterized by the sharing of the fragmented order flow. Competition

might however be intense in equilibrium because QD and QS offset each other (they are

acting as complement). Each dealer would like to trade only the fraction of the order

flow which would best decrease their inventory exposure. In particular, the longer dealer,

dealer 1, is reluctant to add more inventory by trading the sell order QS, and posts

therefore an aggressive ask price in market D to attract the buy order QD. The best ask

in market D is lower than that in a consolidated market:
(
aD−L

)∗
= aHS − ρσ2

2
(−QS)− ε.

An opposite situation holds in market S in which dealer 2 can post non-competitive prices

due to dealer 1’ reluctance to trade the sell order sent to this market: (bS−H)∗ = aHS+ωQD

where ω, defined above in Eq. (3), is negative (ω < 0). Sell orders in market S are thus

executed at a worse (smaller) price than in the benchmark in which they are batched with

the net-buying portion QD and transacted at aHS.

When the divergence between dealers’ inventory positions is low (I1−I2 < QD), dealer

1 would like to take advantage of the offsetting effect and trade profitably both components

of the total fragmented order flow. However, the closer her inventory position is to her

opponent’s position, the less she is able to post competitive quotes: the equilibrium

bid quote in market S rewrites (bS−L)∗ = r1(QS) + ρσ2(I1 − I2) + ε, which tends to

r1(QS) + ε when I1 − I2 → 0, but to a higher limit price (r1(QS) + ρσ2QD + ε) when

I1 − I2 → QD. Therefore two opposite forces coexist which yields to a more competitive

price in market D and a less competitive price in market S, compared to the benchmark:(
aD−L

)∗
= aHS − ρσ2

2
(−QS)− ε, and (bS−L)∗ = aHS − ρσ2

2
QD − ε.

3.4 Empirical predictions

This section investigates the impact of strategic quoting behaviors of dealers across venues

on the market performance. This enables us to propose some new testable implications.
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3.4.1 Expected best offers

In our model, the price of the same asset may differ across venues for two reasons. First,

the size of the order flow routed to each venue is different, implying a different price impact

when executed. Second, dealers manage their position globally, i.e. across two venues.

Therefore dealers place quotes in one venue taking into account the potential impact of

trading in the other venue. Dealers’ quoting aggressiveness depends on their eagerness to

share or consolidate the total fragmented order flow given their global inventory position.

The inter-dependant quoting aggressiveness across venues in turn impacts the magnitude

of market spreads in each venue (see Proposition 3 below).

Following Propositions 1 and 2 which define optimal quotes when the longer dealer

is dealer 1 and QD > 0, Proposition 3 below analyzes the expected best offers in the

dominant and satellite markets for any set of inventory positions and any order flow QD.

For ease of exposition, we denote by qm the magnitude of the order flow routed to market

m: qm = −Qm for a net-selling order flow and qm = Qm for a net-buying order flow

(m = D,S).

Proposition 3 Under the assumption that qD < (Iu− Id), the expected best offers in the

dominant and the satellite markets respectively write:

E
(
aD
)

=
2rd(qD) + ru(qD)

3
+ λSρσ

2qS

[
γ

(
ρσ2qD

(rd − ru)
− (ρσ2qD)

2

3 (rd − ru)2

)
− (1− γ)

]
, (4)

E
(
aS
)

=
2rd(qS) + ru(qS)

3
+ λDρσ

2qD

[
ρσ2qD

(rd − ru)
− (ρσ2qD)

2

3 (rd − ru)2
− (1− γ)

]
. (5)

In line with the intuitions exposed above, the first component of the expected best offer

(equations (4) and (5)) is the direct price impact of the order flow routed to this venue.

It corresponds to the expected best offer that would prevail if q−m is zero (or λ−m =

0). The second component consists of the indirect price impact of trading in another

venue (q−m) resulting from the interdependent quoting strategies of global market-making.

Consequently, when non-zero order flows arrive simultaneously (with probability λ−m > 0,

m = S,D), the average best prices in one venue depend on the size (q−m) and the sign

14



of the order flow routed to the alternative trading venue (γ). The next corollary explores

these relations.

Corollary 1 Expected best offers are impacted by the probability to observe order flows

of same signs across venues (γ) and by the size of the order flows routed to other venues

(q−m). In particular, if order flows are simultaneously non-zero (λ−m > 0), then

(1) the expected best offer in each venue increases with γ ;

(2) the expected best offer in market D decreases with qS if qD < q∗D(γ), while the expected

best offer in market S decreases with qD if qD < q∗∗D (γ).

Intuitively, when γ is large, the likelihood of facing a cumulative effect due to the execution

of trades of same signs is high. An increase in γ thus leads to an increase in best asks

prices reflecting the increasing cost of providing immediacy by dealers.

The effect of the size of the alternative order flow (q−m) is however less clear-cut, since

it depends on its sign (via γ). If q−m is large, the indirect price impact is large. The

sign of the price impact depends however on γ. For small values of γ, best offers may

benefit from an offsetting effect. Conversely, when γ is large, best offers incorporate the

costly impact of a cumulative effect. Consider the limit cases. When γ = 0, the larger

is the indirect price impact of the offsetting effect, the lower best offers can be: best

offers always decrease with q−m. In contrast, if γ = 1, the indirect price impact of the

cumulative effect is large, and average prices worsen (expected best offers increase with

q−m). For any value of γ except 0 and 1, best offers depend on the interplay between

the size and the sign of the order flow routed to the other venue. They also depend on

dealers’ quoting aggressiveness resulting from the probability to consolidate or not the

total fragmented order flow, which explains the conditions obtained on qD.

Note that this corollary enables us to develop new empirical predictions that we test

in the next section. Before turning to testing implications of the model, one natural

question ensuing from the previous corollary is about market performance: best offers

vary with trading in the other venue, but overall, is market performance better or worse

when liquidity supply strategically splits across venues?

From Proposition 3, we can calculate the total expected execution costs in order to

determine whether making the market across multiple venues has a positive or negative

impact on investors. The next corollary compares them to expected transaction costs
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that would prevail in a consolidated market (our natural benchmark).

Corollary 2 Expected transaction costs are lower in fragmented markets than in a con-

solidated market if γ > 1
3

and qD is neither too large, nor too small (r1γ(Iu − Id) < qD <

r2γ(Iu − Id)).

Intuitively, Corollary 2 results from comparing dealers’ quoting aggressiveness when they

are able to split liquidity across trading venues or not (for the same QD + QS). Recall

that the competitiveness of dealers’ quoting strategies depends on the divergence between

dealers’ inventory positions. The intuition is as follows: for large values of γ, if qD is

large, the probability that dealers’ inventory are highly divergent is low, which in turn

implies that the probability to observe more aggressive quoting strategies than in the

benchmark is also low (see previous section). Expected transaction costs are thus higher

in case of fragmented trading. When qD is small enough, dealers’ prices are more likely

to be more competitive, and even more competitive than the benchmark, leading to lower

average transaction costs. For small values of γ, if qD is small, a small divergence between

dealers’ inventory position is less likely, and the probability to observe quoting strategies

as aggressive as in the benchmark is small. If qD is large, this probability is higher. The

higher competitiveness of dealers’ quotes is thus obtained in two opposite situations: for

large qD when γ is small and for small qD when γ is large. The second situation has on

average a larger impact, resulting in more competitive spreads when qD is small enough

but not too small (depending on γ).

This ambiguous result of fragmentation on market performance is consistent with

the mixed empirical evidence as to whether market quality is higher in a fragmented

or in a consolidated market (see the literature review section of O’Hara and Ye, 2011).

In our model, global market-makers consolidate the order flow through their inventory

management, which may have a positive externality in some cases. Few theoretical models

find some positive impacts of fragmentation of trading. Foucault and Menveld (2008) show

that the consolidated depth is larger due to the presence of investors who consolidate the

market through their order submission.
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4 Empirical analysis

Our model predicts that spreads in one venue market depend on the characteristics of

order flow routed to the alternative venue. To test these predictions, we use a proprietary

dataset from Euronext.

4.1 Forming the sample

Euronext was created in 2000 as a result of the merger of three European exchanges,

namely Amsterdam, Brussels and Paris. Lisbon joined in 2002. Before the introduction

of the Universal Trading Platform (UTP) in 2009, the four exchanges maintained their

domestic market. As a result, firms could be multi-listed on several Euronext exchanges;

for example, Air France-KLM was traded in Amsterdam and in Paris.

Our sample consists of all cross-listed stocks within Euronext, spanning four months

(79 trading days) from January 1, 2007 to April 30, 2007.11 The data on trades and

quotes are provided by Euronext. Euronext files also provide us with the identification

of the member participating in each quote or transaction, and whether the member is

acting as an agent or as a principal. The data assigns the same code to a member across

stocks and across exchanges, enabling us to trace members’ inventory changes and quoting

behavior across time and across exchanges. Euronext exchanges follow the same market

model (same trading hours, and same trading rules), and the payment of membership

fees grants access to all Euronext markets. Note also that, during our sample period

(pre-MiFID environment), trading was concentrated in Euronext.12 For all these reasons,

Euronext is an excellent environment to test the predictions of our model.

We keep firms that trade using a continuous trading session in all exchanges on which

they are traded. We also restrict our analysis to members acting in their capacity as a

principal, that is, either proprietary traders or exchange-regulated market makers, who

trade at least once every month in each of the two exchanges on which the stock is traded.

Overall, we follow 42 members, denominated as ‘global dealers’. Because these dealers do

11Three trading days are dropped in January due to missing data about best limits.
12Some French stocks were traded on the LSE or the Deutsche Boerse, while some Dutch stocks were

traded in Xetra. Gresse, 2012 finds a market share of 96.45% for CAC40 stocks and even 99.99% for
other SBF120 stocks in October 2007. Degryse, De Jong, and van Kervel, 2011, show that Euronext
concentrates the trading volume of the 52 AEX Large and Mid cap constituents on our sample period.
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not necessarily follow the same stocks, our sample finally consists of 156 couples (stock,

dealer).

We also collect information on prices (closing, high and low), shares outstanding and

trading volume from COMPUSTAT Global over our sample period. The final sample

contains 20 firms with non-missing data, trading continuously in two Euronext exchanges.

Among them, 11 are traded on Euronext Amsterdam, 12 are traded on Euronext Brussels

and 17 on Euronext Paris. To determine which is the dominant market (market D in the

model) and which is the satellite market (market S in the model), we sort markets for each

stock according to the trading volume in number of shares as of December 31, 2006. As

documented by Figure 2, there is a clear hierarchy of the markets, making straightforward

the identification of the dominant market (see also summary statitics presented in Table

1).

4.1.1 Measuring liquidity

We measure the spread in the market m as the daily equally-weighted average bid-ask

spread for stock j, on day t. We focus on two measures, the relative spreadRSPREAD m,

and the spread in Euros, SPREAD m.13

4.1.2 Measuring global inventory

As pointed out by Hansch et al. (1998), dealers differ in the amount of capital at risk

they commit to their trading activities and/or in their risk aversion. We follow their

methodology by building standardized inventory positions to control for these differences.

Let IP j
i,t denote the inventory position of member i in stock j at the end of day t. We

use the record of all trades executed by each member in multiple markets as a principal,

plus the direction of these trades in both markets to obtain her inventory position at the

end of each day. We thus construct a time series for each member’s inventory position

in each stock from the start to the end of our sample period. Since more than 95% of

the volumes are traded in Euronext during our sample period, our inventory variable is a

good proxy for dealers’ global inventories. We compute the mean (IP
j

i ) and the standard

13We compute both equally-weighted and time-weighted averages of the quoted spreads. As the results
for the two weighting schemes are virtually identical, we restrict the presentation to the equally-weighted
spread measures.
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deviation (Sji ) for each of these inventory series. The standardized inventory is defined as

follows:

Iji,t =
IP j

i,t − IP
j

i

Sji
.

There is a total of 156 standardized inventory series.

We then build a measure of the relative inventory. Let IjM,t denote the median inven-

tory on day t in stock j, and let RIi,t = Iji,t−I
j
M,t denote the member i’s inventory position

relative to the median inventory. The larger RIi, the more divergent the inventory po-

sition of member i relative to the median is, and the more aggressively she will quote,

in order to reduce her inventory exposure (Hansh et al., 1998). We take the standard

deviation of the relative inventory across members for each day t and each stock j, SRIjt ,

to get the degree of quoting aggressiveness induced by inventory management. We use

this measure as a proxy of the difference I1 − I2 in our model.

4.1.3 Measuring net order flow

Following Chordia and Subrahmanyam, 2004 and Boehmer and Wu, 2008, we define the

absolute net order flow in market m (i.e., order imbalance) in stock j on day t, OIMB m,

as the daily number of buyer-initiated trades (NB BUY m) minus the daily number

of seller-initiated trades (NB SELL m) scaled by the daily total number of trades (to

eliminate the impact of total trading activity) as follows:

OIMB mj
t =

∣∣NB BUY mj
t −NB SELL mj

t

∣∣
NB BUY mj

t +NB SELL mj
t

We exclude the first and last five minutes of trading in order to avoid contamination

by specific trading behaviors during the open or close of the markets.14 As a robustness

check we also use measures of order imbalance in Euros in some of our tests.

In addition, the model’s predictions depend on the sign of the order flow sent to a given

market. We therefore calculate the twenty-minute order imbalance within each market

(the satellite and the dominant market) and compute the daily correlation between these

order imbalances. The dummy variable D POS (D NEG) takes the value of one if the

14In February 19, 2007, the closing fixing moved from 5:25 pm to 5:30 pm. We therefore drop all
observations before 9:05 am and after 5:20 pm.
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correlation is positive (negative) on a given day, and zero otherwise.

4.1.4 Control variables

In the regressions, we use the monthly averages of the following stock control variables

observed in the previous month: MV , the log market capitalization in millions of Euros;

HIGHLOW , a measure of volatility computed using the range of high and low prices

in the day, following Parkinson (1980); V OLSHR, the log daily volume in millions of

shares; and when using order imbalances in Euros as variables of interest, the inverse of

the price, 1/PRICE, where PRICE refers to the closing price in Euros. We further

introduce NBR DEALERS, the number of global dealers, to control for the degree of

competitiveness in the stock.

4.2 Summary statistics

Table 1 presents summary statistics for our sample. Panel A presents statistics across

stocks. The average (median) firm has a stock price of 44.3 (36.9) Euros, a market cap

of 32.7 (23.2) billion Euros, and 9 (4) members trading on the stock. Panel B presents

statistics computed within each market. Relative (quoted) spreads of the satellite market

are four to eight times larger than those of the dominant market, depending if one takes

means or medians. Order imbalances are also much larger in the satellite market, reflecting

price pressure due to lack of liquidity, and trading volume and trade activity much smaller.

T-tests of the difference in means between the two markets (not shown) confirm the

statistical significance of these differences.

4.3 Multivariate analysis

To test the predictions of our model, we estimate the relation between the daily spreads in

the satellite market and the order flow sent to the dominant market. We run the following

panel regression model:

RSPREAD SAT jt = α+β1OIMB DOM j
t +β2D POSjt+β3SRI

j
t +β4OIMB SAT jt +β5X

j+εjt

(6)

The matrix Xj controls for characteristics of the stock j using the control variables
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mentioned above (NB DEALERS, MV , HIGHLOW , and V OLSHR, the latter three

averaged for the previous calendar month).

Corollary 1 predicts that the size, and the sign of the order flow routed to the domi-

nant market impact the spreads in the satellite market. More specifically, we expect the

following signs: β1 > 0, and β2 > 0. Given that the standard deviation of the relative

inventory across dealers, SRI, is a proxy for quoting aggressiveness, we expect β3 < 0.

Finally, the net order flow sent to the satellite market, OIMB SAT , controls for the

direct price impact of trades, we thus expect β4 > 0.

All specifications include time dummies and use clustered standard errors by stock to

accommodate the possibility that relative spreads are strongly correlated within firms.

Panel A of Table 2 presents estimation results (results for Panel B are similar and

are not discussed for the sake of brevity). The overall fit of the model across the three

specifications is good, with an adjusted R2 statistic of 37%. The main conclusions from

the analysis are as follows. First, the order flow of the dominant market has a positive

and statistically significant impact on the relative spreads of the satellite market (coeff.

1.51, t-stat. 2.77 in column 1). In terms of economic significance, a one-standard de-

viation shock in OIMB DOM (0.201 from Table 1) is associated with a 0.3 change in

RSPREAD SAT , representing roughly 25% of the average relative spread in the satellite

market. Surprisingly we find no statistical significant coefficient for the order flow sent to

the satellite market on its own observed spreads. Second, the variable SRI has a negative

and statistical significant impact on spreads (coeff. -0.42, t-stat. -1.93). Dealers post

more aggressive prices when there is a high difference of inventories between them, as

expected. Third, the satellite market exhibits lower relative spreads on days in which its

order flow is positively correlated with that of the dominant market, also consistent with

the model’s predictions (coeff. 0.19, t-stat. 2.15).

Column 2 introduces an additional interaction variable between D POS and SRI.

Consistent with the model, we find that dealers post more aggressive prices in those cases

relative to the unconditional case (coeff. -0.32, t-stat. 1.69). Finally, column 3 includes

for completeness a specification with D NEG, the symmetric of D POS. The results

confirm the prediction symmetric of that discussed above, namely, that days in which

order flow exhibits different signs in the two markets are associated with lower spreads in

the satellite market.
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Regarding the other control variables, the existence of a higher number of members

leads to more competition and reduces spreads (Biais, 1993), while trading volume is also

associated with lower spreads. Results for other control variables are not statistically

significant.

5 Conclusion

Markets are nowadays fragmented. Investors therefore have the opportunity to search

for the best price and split their orders accordingly, but free entry in new trading venue

also enables the same pool of liquidity suppliers to make different markets. To investigate

the impact of fragmentation on the behavior of these liquidity suppliers, we develop an

inventory model in which risk averse liquidity suppliers quote a single asset in multiple

venues. We exploit the co-existence of multiple order books for the same security within

Euronext to test the predictions of our simple model. Our panel regression analysis reveals

that the size of the bid-ask spread in a venue is related:

• to the order flow routed to the alternative venue,

• to whether net order flows are positively or negatively correlated, and

• to the dispersion in liquidity suppliers’ inventory positions.

These empirical findings are in line with the predictions of the model and are not

easily explained by alternative theories. This has interesting implications as the latter

usually show that fragmentation increases bid-ask spreads, while we find the opposite

in some cases. The intuition of this result is that when liquidity suppliers are active in

different venues, they actually consolidate the markets – therefore mitigating the negative

effect of competition, while increasing no only inter-market competition on fees, but also

intra-market competition between dealers.

There are several interesting venues for future research. On the empirical front, Eu-

ronext’ move to a single order book with UTP in 2009 would provide a natural experiment

to compare the overall liquidity in fragmented versus consolidated market.

On the theoretical front, it would be interesting to investigate whether fragmented

markets are consolidated by market makers via alternative channels to inventory man-

agement, whether their private information, or their anticipation of adverse selection.
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Besides, Buti, Rindi, and Werner, 2011 find that increased dark pool activity improves

market quality in the NYSE and in the Nasdaq. Our analysis raises intriguing questions

about the co-existence of transparent venues and dark pools in the presence of global

dealers, as our model relies on the transparency of order flows and prices.
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Figure 1: Quoting game in market m conditional on dealers observing Qm 6= 0

Figure 1 represents the extensive form of the quoting game in market m, conditional on
Qm 6= 0. At date 2, dealers observe Qm 6= 0 and Q−m. At date 3, they post an ask price if
Qm > 0 or a bid price if Qm < 0 in market m. Simultaneously, if Q−m 6= 0, they post an
ask price if Q−m > 0 or a bid price if Q−m < 0 in market −m. In Section 3, we find the
equilibrium quotes of the subgames (1+) and (1-) for m = D, and (1+) and (3-) for m = S.
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Figure 2: Daily number of trades and daily number of quote updates in the dominant
and the satellite market

The average daily number of trades and number of quote updates for each 20-minute period from 9:05
am to 17:25 pm in each trading venue is calculated for each stock and then averaged across stocks for
the 20 cross-listed Euronext stocks from January to April 2007.
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Table 1 

Summary statistics 

This table reports summary statistics for the data used in this study. The sample consists of 20 multi-listed, 

continuously-traded stocks on Euronext exchanges, from January 1, 2007 through April 30, 2007 (79 trading 

days). The quotes and trades data come from Euronext, and other stock-level information comes from 

Compustat Global. Panel A reports stock-level statistics. PRICE is the daily closing price in Euros from 

Compustat Global. HIGHLOW is a measure of volatility computed using the range of high and low prices for 

the day, following Parkinson (1980). Market capitalization (MV) is price times shares outstanding, in 

millions of Euros. SRI is the dispersion of the members’ inventory relative to the median inventory position, 

measured in number of shares. SRI_EUR is calculated similarly, but is measured in Euros. NBR_DEALERS 

is the number of dealers acting as a principal and trading at least once every month. Panel B reports 

summary statistics by market type. SPREAD is the equally-weighted average difference between the best bid 

and the best ask. MIDPOINT is the average, throughout the trading day, of the average between the best 

bid and the best ask. RSPREAD, or relative spread, is equal to the equally-weighted average of ratio 

between the spread and the midpoint. VOLSHR is the daily volume reported in millions of shares. 

NBR_TRAN is the number of trades per day. OIMB is a measure of absolute order imbalance in number of 

transactions, computed as the absolute value of the average of the daily number of buyer-initiated trades less 

the daily number of seller-initiated trades for the entire trading day, scaled by daily volume. 
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Table 1 

Summary statistics (cont.) 

 

Panel A. Summary statistics 

  N Mean Std. Dev. Q1 Median Q3 

PRICE 1307 44.329 30.199 21.370 36.900 53.950 

HIGHLOW 1307 0.094 0.146 0.029 0.055 0.105 

MV 1307 32745.340 34476.740 8835.779 23278.160 51339.430 

SRI 1307 0.268 0.411 0.013 0.063 0.323 

SRI_EUR 1307 9.970 19.468 0.431 2.681 10.192 

NBR_DEALERS 1307 8.972 8.660 3 4 12 

              

Panel B. Summary statistics by market type 

  
 

Dominant market 

N Mean Std. Dev. Q1 Median Q3 

SPREAD 1307 0.088 0.110 0.019 0.042 0.121 

MIDPOINT 1307 45.055 30.143 21.317 38.137 54.358 

RSPREAD 1307 0.271 0.386 0.065 0.106 0.251 

VOLSHR 1307 4.514 8.835 0.062 1.109 6.105 

NBR_TRAN 1307 3941.944 4425.691 169 2598 6247 

OIMB 1307 0.195 0.201 0.056 0.116 0.261 

              

Satellite market 

N Mean Std. Dev. Q1 Median Q3 

SPREAD 1307 0.651 0.954 0.060 0.159 1.114 

MIDPOINT 1307 45.002 30.062 21.318 38.132 54.098 

RSPREAD 1307 1.202 1.365 0.201 0.831 1.554 

VOLSHR 1307 0.131 0.570 0.000 0.003 0.015 

NBR_TRAN 1307 152.334 538.174 2.000 12.000 47.000 

OIMB 1307 0.427 0.366 0.086 0.335 0.754 
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Table 2 

Determinants of Relative Spreads in the Satellite Market 

This table presents estimates of the relation between order imbalances for the trading day and relative bid-

ask spreads in the satellite market, conditional on stock characteristics. The left-hand side variable is 

RSPREAD_SAT, the equally-weighted daily average of ratio between the difference between the best bid 

and the best ask (the spread) and the average between the best bid and the best ask (the midpoint) in the 

satellite market. The right-hand-side variable of interest is OIMB_DOM (OIMB_DOM_EUR), the absolute 

value of the average of ratio between the daily number (value) of buyer-initiated shares less the daily number 

(value) of seller-initiated shares and the total volume in shared for the entire trading day in the dominant 

market. OIMB_SAT (OIMB_SAT_EUR) is calculated similarly for the satellite market. SRI (SRI_EUR) is 

the dispersion of the members’ inventory relative to the median inventory position, measured in number of 

shares (Euros). D_POS (D_POS_EUR) is an indicator variable that takes the value of 1 if the intra-day 

correlation of the 20-minute order imbalance measured using the number (value) of trades between the 

dominant and the satellite market is positive, and zero otherwise. D_NEG (D_NEG_EUR) is an indicator 

variable that takes the value of 1 if the intra-day correlation of the 20-minute order imbalance measured 

using the number (value) of trades between the dominant and the satellite market is negative, and zero 

otherwise. NBR_DEALERS is the daily number of liquidity suppliers acting as a principal and trading at 

least once every month. MV is the (log of) market capitalization. HIGHLOW is a measure of volatility 

computed using the range of high and low prices for the day, following Parkinson (1980). VOLSHR is the 

(log of) daily volume reported in millions of shares. 1/PRICE is the inverse of the daily closing price in 

Euros. The variables MV, HIGHLOW, VOLSHR and 1/PRICE used in this regression are the monthly 

averages of daily values observed in the previous month. Panel A shows specifications using variables with 

order imbalances and inventory measured in number of shares and Panel B shows specifications using 

variables with order imbalances and inventory measured in Euros. The model includes time dummies and t-

statistics are calculated using robust standard errors clustered by stock. The symbols ***, **, * denote 

significance levels of 1%, 5% and 10%, respectively. for the two-tailed hypothesis test that the coefficient 

equals zero.  
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Table 2 

Determinants of Relative Spreads in the Satellite Market (cont.) 

 

Panel A. 

Dependent variable: RSPREAD_SAT 

 

(1) 

 

(2) 

 

(3) 

 

 

Coeff. t-stat.   Coeff. t-stat.   Coeff. t-stat.   

OIMB_DOM 1.51 2.77 ** 1.49 2.73 *** 1.51 2.77 *** 

SRI -0.42 -1.93 * -0.19 -1.03 

 

-0.42 -1.93 * 

D_POS 0.19 2.15 ** 0.30 2.32 ** 

D_POS × SRI 

   

-0.32 -1.69 * 

D_NEG -0.19 -2.15 ** 

OIMB_SAT 0.04 0.26 

 

0.04 0.29 

 

0.04 0.26 

 NBR_DEALERS -0.07 -3.26 *** -0.07 -3.24 *** -0.07 -3.26 *** 

MV 0.09 0.66 

 

0.08 0.65 

 

0.08 0.66 

 HIGHLOW 3.06 1.26 

 

3.05 1.27 

 

3.06 1.26 

 VOLSHR -0.02 -2.37 ** -0.02 -2.35 ** -0.02 -2.37 ** 

Intercept -0.60 -0.2 

 

-0.65 -0.22 

 

-0.41 -0.13 

 

          Time Dummies Yes 

  

Yes 

 

  Yes 

  N 1307 

  

1307 

 

  1307 

  Adjusted R2 0.37 

  

0.37 

 

  0.37 

                      
 

 

Panel B. 

Dependent variable: RSPREAD_SAT 

 

(1) 

 

(2) 

 

(3) 

 

Coeff. t-stat.   Coeff. t-stat.   Coeff. t-stat.   

OIMB_DOM_EUR 1.59 2.55 ** 1.57 2.54 ** 1.56 2.55 ** 

SRI_EUR -0.01 -2.03 ** -0.01 -0.98 

 

-0.01 -2.03 * 

D_POS_EUR 0.14 1.67 * 0.24 2.1 ** 

D_POS_EUR × SRI_EUR 

   

-0.01 -2.59 ** 

D_NEG_EUR -0.14 -1.67 * 

OIMB_SAT_EUR 0.05 0.36 

 

0.04 0.33 

 

0.05 0.36 

 NBR_DEALERS -0.05 -2.51 ** -0.05 -2.53 ** -0.05 -2.51 ** 

MV -0.05 -0.3 

 

-0.05 -0.3 

 

-0.05 -0.3 

 HIGHLOW 3.75 1.71 * 3.75 1.72 * 3.75 1.71 * 

VOLSHR -0.01 -0.61 

 

-0.01 -0.6 

 

-0.01 -0.61 

 1 / PRICE -11.8 -2.24 ** -11.7 -2.24 ** -11.8 -2.24 ** 

Intercept 2.59 0.71 

 

2.51 0.69 

 

2.74 0.76 

 

          Time Dummies Yes 

  

Yes 

 

  Yes 

  N 1307 

  

1307 

 

  1307 

  Adjusted R2 0.4 

  

0.4 

 

  0.4 

                      
 



6 Appendix – Proofs

Proof of Lemma 1

Case 1. We first look for the necessary conditions that must be fulfilled simultaneously

in order for an equilibrium characterized by the consolidation of the order flow to exist.

Dealer i ∈ {1, 2} trades the total fragmented order flow in equilibrium if and only if

prices pD prevailing in market D in which QD > 0, and pS prevailing in market S (in

which QS > 0 or QS < 0) are the maximum (resp. minimum in market S if QS < 0)

prices such that: (i) trading QD +QS is profitable for dealer i (vi(QD +QS) ≥ 0), but not

for dealer −i (v−i(QD +QS) < 0); (ii) for m = {D,S}, conditional on trading Qm, dealer

i is willing to trade Q−m, that is, vi(QD +QS) ≥ vi(QS) and vi(QD +QS) ≥ vi(QD); (iii)

dealer −i is not willing to undercut dealer i neither in market D nor in market S, that

is, v−i(QD) < 0 and v−i(QS) < 0. Using the definition of dealers’ reservation prices and

trading profits, these conditions rewrite as follows:

i : pDQD + pSQS ≥ ri(QD +QS)(QD +QS),

i’ : pDQD + pSQS < r−i(QD +QS)(QD +QS);

ii : pD ≥ ri(QD) + ρσ2QS

ii’ : pSQS ≥
(
ri(QS) + ρσ2QD

)
QS

iii : pD < r−i(QD)

iii’ : pSQS < r−i(QS)QS

Suppose that dealer 1 trades QD+QS. If (I1−I2−QD)QS ≤ 0, then (r1(QS) + ρσ2QD)QS ≥
r2(QS)QS, so conditions (ii’) and (iii’) cannot hold simultaneously. A necessary condition

for such an equilibrium to exist is thus (I1 − I2 −QD)QS > 0, i.e., either I1 − I2 > QD if

QS > 0 or I1 − I2 < QD if QS < 0.

Suppose that dealer 2 trades QD +QS. Recall that by assumption I1 > I2 (implying that

r1(QD + QS) < r2(QD + QS)) and QD + QS > 0. Thus conditions (i) and (i’) cannot

simultaneously hold for i = 2. Therefore, there exists no such an equilibrium.

Case 2. We now look for the necessary conditions that must be fulfilled simultaneously

for the existence of an equilibrium where dealers share the total fragmented order flow.
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At equilibrium, dealer i ∈ {1, 2} trades QD and dealer −i trades QS if and only if

prices pD prevailing in market D where QD > 0, and pS prevailing in market S (where QS

is either positive or negative) are the maximum (resp. minimum in market S if QS < 0)

prices such that: (I) dealer i is better off trading QD rather than QS (vi(QD) > vi(QS))

and dealer −i is better off trading QS rather than QD (v−i(QS) > v−i(QD)); (II) dealer

−i is better off trading QS only rather than QD + QS (v−i(QD + QS) < v−i(QS)) and

dealer i is better off trading QD only rather than QD +QS (vi(QD +QS) < vi(QD)) ; (III)

trading QD is profitable for dealer i (vi(QD) ≥ 0) and trading QS is profitable for dealer

−i (vi(QS) ≥ 0). These latter conditions may be rewritten as follows:

I : pD > ri(QD) + (pS − ri(QS))
QS

QD

I ’ : pSQS > r−i(QS)QS + (pD − r−i(QD))QD

II : pD < r−i(QD) + ρσ2QS

II’ : pSQS <
(
ri(QS) + ρσ2QD

)
QS

III : pD ≥ ri(QD)

III’ : pSQS ≥ r−i(QS)QS

Suppose that dealer 1 trades QD and dealer 2 trades QS. If (I1 − I2 − QD)QS ≥ 0, then

conditions II’ and III’ cannot hold simultaneously. A necessary condition for such an

equilibrium to exist is thus (I1 − I2 −QD)QS < 0, that is, either I1 − I2 < QD if QS > 0

or I1 − I2 > QD if QS < 0.

Suppose that dealer 1 trades QS and dealer 2 trades QD. If QS < 0, then conditions II and

III cannot hold simultaneously, since r1(QD) + ρσ2QS < r2(QD). If QS > 0, a necessary

condition for conditions I and I’ to hold simultaneously is

r1(QS) + (pD − r1(QD))
QD

QS

< r2(QS) + (pD − r2(QD))
QD

QS

, (7)

which is never true since I1 > I2 and |QD| > |QS|. Consequently, there exists no equi-

librium in which the longer dealer (here, dealer 1) would be the first buyer in market S

while the shorter dealer 2 would be the first seller in market D. Q.E.D.

Case 3. Suppose finally that (I1 − I2 − QD)QS = 0, then (r1(QS) + ρσ2QD)QS =
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r2(QS)QS. Dealers 1 and 2 have the same reservation prices for QS in market S. Conse-

quenly both are equally likely to execute QS.

Proof of Proposition 1

From Lemma 1, there are two cases to consider when QS > 0:

Case 1: I1−I2 > QD, i.e., (I1−I2−QD)QS > 0. From Lemma 1, we know that dealer 1

consolidates the total fragmented order flow by posting the best ask prices in both market

D and S. The ask prices pD and pS must satisfy the set of conditions i to iii’ (Case 1 in

Lemma 1) given that QS > 0 and I1 − I2 > QD and are the maximum prices such that:

ii and iii : r1(QD) + ρσ2QS ≤ pD < r2(QD)

ii’ and iii’ : r1(QS) + ρσ2QD ≤ pS < r2(QS)

i : r1(QD +QS)(QD +QS) ≤ pDQD + pSQS

i’ : pDQD + pSQS < r2(QD +QS)(QD +QS)

From the two first inequalities, (pD)∗ = r2(QD) − ε and (pS)∗ = r2(QS) − ε are natural

candidates for the equilibrium, as they are the maximum prices that satisfy conditions

ii, ii’, iii and iii’. It is easily shown that they also satisfy conditions i and i’ (details are

omitted for brevity).

Case 2: I1 − I2 < QD, i.e., (I1 − I2 − QD)QS < 0. In this case, dealer 1 executes QD

while dealer 2 executes QS (see Lemma 1). Given the set of conditions I to III’ and under

the hypotheses that QS > 0 and I1−I2 < QD, the ask prices pD and pS are the maximum

prices such that:

II and III : r1(QD) ≤ pD < r2(QD) + ρσ2QS

II’ and III’ : r2(QS) ≤ pS < r1(QS) + ρσ2QD

I : pD > r1(QD) + (pS − r1(QS))
QS

QD

I’ : pS > r2(QS) + (pD − r2(QD))
QD

QS

The natural candidates for the equilibrium pD = r2(QD) + ρσ2QS − ε and pS = r1(QS) +

ρσ2QD − ε from the two first inequalities do not satisfy condition I’. Consequently, the
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constraint I’ is binding at equilibrium, and equilibrium prices must be such that:

(pD)∗ = r2(QD) + ((pS)∗ − r2(QS))
QS

QD

− ε (8)

First, notice that under the latter condition, condition I always holds (given that (I1 −
I2)(QD−QS) > 0). Second, inputting (pD)∗ defined in Eq.(8) into conditions (II and III)

and (II’ and III’) yields the following restrictions on (pS)∗:

II and III:r2(QS) + (r1(QD)− r2(QD))
QD

QS

≤ (pS)∗ < r2(QS) + ρσ2QD

II’ and III’:r2(QS) ≤ (pS)∗ < r1(QS) + ρσ2QD

Third, we input (pD)∗ (defined in Eq.(8)) in both the trading profit of dealer 1, conditional

on the fact that she executes QD, and the trading profit of dealer 2, conditional on the

fact that he executes QS:

v1(QD) =

(
r2(QD) + ((pS)∗ − r2(QS))

QS

QD

− r1(QD)

)
QD,

v2(QS) = ((pS)∗ − r2(QS))QS.

We observe that dealers’ profits are strictly increasing in pS. Consequently, dealers’

reaction functions are such that the best ask price in market S is the highest possible

one. From conditions (II and III) and (II’ and III’), and under the hypothesis that

I1 − I2 < QD, we deduce that condition (II’ and III’) is binding and that (pS)∗ is such

that:

(pS)∗ = r1(QS) + ρσ2QD − ε, (9)

from which we deduce that

(pD)∗ = r2(QD) + ρσ2(I2 − I1 +QD)
QS

QD

− ε (10)

Consequently, there exists a unique equilibrium such that dealer 1 post a+L1 = (a+LD )∗ =

(pD)∗ and trades QD while dealer 2 posts the best ask price equal to (pS)∗ and trades QS.

Q.E.D.

Proof of Proposition 2
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There are two cases to consider when QS < 0 (see Lemma 1):

Case 1: I1 − I2 > QD, i.e., (I1 − I2 −QD)QS < 0. In this case, dealers share the total

fragmented order flow. Equilibrium prices must satisfy condition I to III’ (see Case 2 in

the proof of Lemma 1), under the hypotheses that QS < 0 and I1 − I2 > QD. Prices are

thus such that:

II and III : r1(QD) ≤ pD < r2(QD) + ρσ2QS

II’ and III’ : r1(QS) + ρσ2QD < pS ≤ r2(QS)

I : pD > r1(QD) + (pS − r1(QS))
QS

QD

I ’ : pS < r2(QS) + (r2(QD)− pD)
QD

−QS

From the two first inequalities, pD = r2(QD)−ρσ2(−QS)− ε and pS = r1(QS) +ρσ2QD +

ε are natural candidates for the equilibrium. It is easily shown that they also satisfy

conditions I and I’. Therefore, there exists a unique equilibrium such that dealer 1 posts

the best ask price in market D, equal to (a−HD )∗ = (pD)∗ = r2(QD)− ρσ2(−QS)− ε while

dealer 2 posts the best ask in market S equal to (a−HS )∗ = (pS)∗.

Case 2: I1− I2 < QD, i.e., (I1− I2−QD)QS > 0. Dealer 1 trades the total fragmented

order flow (see Lemma 1). The ask price pD in market D and the bid price pS in market

S must satisfy the set of conditions i to iii’ and are such that:

ii and iii : r1(QD)− ρσ2(−QS) ≤ pD < r2(QD)

ii’ and iii’ : r2(QS) < pS ≤ r1(QS) + ρσ2QD

i and i’ : r1(QD +QS)(QD +QS) ≤ pDQD + pSQS < r2(QD +QS)(QD +QS)

The natural candidates for the equilibrium pD = r2(QD) − ε and pS = r2(QS) + ε do

not satisfy condition i’. Consequently, the constraint i’ is binding at equilibrium, and

equilibrium prices must be such that:

(pD)∗ = r2(QD +QS) + (p∗S − r2(QD +QS))
(−QS)

QD

− ε (11)

First, we use the expression of (pD)∗ in dealer 1’s trading profit (conditional on the fact
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that she executes QD and QS): v−L1 (QD + QS) = ρσ2(I1 − I2)(QD + QS). This trading

profit does not depend on equilibrium prices. Consequently, there may exist a continuum

of prices that may sustain the equilibrium. Second, inputing (pD)∗ into conditions ii to

iii’, the equilibrium price in market S must satisfy:

ii and iii : (r1 − r2)
QD

−QS

+ r2(QS) ≤ (pS)∗ < (r2 − r1)
QD

−QS

+ r2(QS)− ρσ2QD

ii’ and iii’ : r2(QS) < (pS)∗ ≤ r1(QS) + ρσ2QD

Obviously, since I1 > I2, (r1 − r2) QD
−QS

< r2(QS) and r1(QS) + ρσ2QD < (r2 − r1) QD
−QS

+

r2(QS) − ρσ2QD so the second inequality is constraining both the minimum and the

maximum possible price in market S. Within all equilibria defined by:

(pD)∗ = r2(QD +QS)
QD +QS

QD

+ (pS)∗
(−QS)

QD

− ε,

(pS)∗ ∈ (r2(QS), r1(QS) + ρσ2QD],

we select the only equilibrium that is continuous at I1 − I2 = QD, that is, (pS)∗ =

r1(QS) + ρσ2QD, from which we deduce that (pD)∗ = r2(QD) + ρσ2QS . Q.E.D.

Proof of Proposition 3

We decompose the proof into two results, depending on the sign of QS, that is, on whether

γ = 1 or γ = 0.

Result 1 (Same signs) Suppose that λS = λD = 1 and that order flows have same signs

(γ = 1). The expected ask prices in the dominant (D) and the satellite (S) markets are

equal to:

E
(
am,+

)
=

2rd (Qm) + ru (Qm)

3
+ ρσ2Q−m

(
ρσ2QD

rd − ru
− 1

3

(
ρσ2QD

rd − ru

)2
)
,m = S,D. (12)

Proof. We first compute the expected ask that prevails in market D. For sake of brevity,
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let us define rd (QD) = rd, ru (QD) = ru, r1 (QD) = x and r2 (QS) = y.

E
(
aD,+

)
= E

(
min

(
aD,+1 , aD,+2

))
= E

 r2 (QS)1r1(QS)+ρσ2QD<r2(QS) + (r1 (QS) + ρσ2QD)1r1(QS)+ρσ2QD>r2(QS)

+r1 (QS)1r2(QS)+ρσ2QD<r1(QS) + (r2 (QS) + ρσ2QD)1r2(QS)+ρσ2QD>r1(QS)


or

E
(
aD,+

)
=

1

(rd − ru)2

[∫ rd−ρσ2QD

ru

∫ rd

x+ρσ2QD

ydydx+

∫ rd

ru+ρσ2QD

∫ x−ρσ2QD

ru

xdydx

+

∫ rd

ru

∫ rd

x

(
y + ρσ2QS

(
ρσ2QD − (y − x)

ρσ2QD

))
dydx

−
∫ rd−ρσ2QD

ru

∫ rd

x+ρσ2QD

(
y + ρσ2QS

(
ρσ2QD − (y − x)

ρσ2QD

))
dydx

+

∫ rd

ru

∫ x

ru

(
x+ ρσ2QS

(
ρσ2QD − (x− y)

ρσ2QD

))
dydx

−
∫ rd

ru+ρσ2QD

∫ x−ρσ2QD

ru

(
x+ ρσ2QS

(
ρσ2QD − (x− y)

ρσ2QD

))
dydx

]
. (13)

After straightforward calculations, we get:

E
(
aD,+

)
=

2rd (QD) + ru (QD)

3
+ ρσ2QS

(
ρσ2QD

(rd − ru)
− (ρσ2QD)

2

3 (rd − ru)2

)
. (14)

We now turn to the expected ask prevailing in market S when γ = 1. This expression

writes:

E
(
aS,+

)
= E

(
min

(
aS,+1 , aS,+2

))
= E

 r2 (QS)1r1(QS)+ρσ2QD<r2(QS) + (r1 (QS) + ρσ2QD)1r1(QS)+ρσ2QD>r2(QS)

+r1 (QS)1r2(QS)+ρσ2QD<r1(QS) + (r2 (QS) + ρσ2QD)1r2(QS)+ρσ2QD>r1(QS)


Using a similar reasoning and straightforward computations to those used in the previous

case, the latter expression rewrites:

E
(
aS,+

)
=

2rd + ru
3

+ ρσ2QD

(
(ρσ2QD)

(rd − ru)
− (ρσ2QD)

2

3 (rd − ru)2

)
. (15)
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Q.E.D.

Result 2 (Opposite signs) Suppose that λS = λD = 1 and that order flows have opposite

signs (γ = 0). The expected asks in markets D and S respectively write:

E
(
aD,−

)
=

2rd (qD) + ru (qD)

3
− ρσ2qS, (16)

E
(
aS,−

)
=

2rd (qS) + ru (qS)

3
− ρσ2qD +

(ρσ2qD)
2

(rd − ru)
− (ρσ2qD)

3

3 (rd − ru)2
. (17)

Proof. We first compute the expected ask prevailing in market D (for QD > 0 and

QS < 0). Straightforward computations yield:

E
(
aD,−

)
= E

(
min

(
aD,−1 , aD,−2

))
=

2rd (QD) + ru (QD)

3
− ρσ2 (−QS) . (18)

Symmetrically, the expected ask prevailing in market S, and considering that QD < 0

and QS > 0, writes:

E
(
aS,−

)
= E

(
min

(
aS,−1 , aS,−2

))
= E

 r2 (QS)1r2(QS)>r1(QS)−ρσ2(−QD) + (r1 (QS)− ρσ2 (−QD))1r2(QS)<r1(QS)−ρσ2(−QD)

+r1 (QS)1r1(QS)>r2(QS)−ρσ2(−QD) + (r2 (QS)− ρσ2 (−QD))1r1(QS)<r2(QS)−ρσ2(−QD)


or

E
(
aS,−

)
=

1

(rd − ru)2

[∫ rd

ru+ρσ2(−QD)

∫ x−ρσ2(−QD)

ru

(
x− ρσ2 (−QD)

)
dydx

+

∫ rd−ρσ2(−QD)

ru

∫ rd

x+ρσ2(−QD)

(
y − ρσ2 (−QD)

)
dydx

+

(∫ rd

ru

∫ rd

x

(
x+ ρσ2QD

)
dydx−

∫ rd−ρσ2QD

ru

∫ rd

x+ρσ2QD

ydydx

)

+

(∫ rd

ru

∫ x

ru

(
y + ρσ2QD

)
dydx−

∫ rd

ru+ρσ2QD

∫ x−ρσ2QD

ru

(
y + ρσ2QD

)
dydx

)]
.

(19)
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This latter expression rewrites:

E
(
aS,−

)
=

2rd (QS) + ru (QS)

3
− ρσ2 (−QD) +

(ρσ2 (−QD))
2

(rd − ru)
− (ρσ2 (−QD))

3

3 (rd − ru)2
. (20)

Q.E.D.

Proposition 3 is obtained from Results 1 and 2 considering the extensive form of the

game represented in Figure 1. Note that we change slightly notations qm = Qm for a

net-buying order flow and qm = −Qm for a net-selling order flow (m = S,D) in order to

ease computations of Corollaries 1 and 2. Q.E.D.

Proof of Corollary 1

Part 1. Expected asks in market m increase when γ increases (m = S,D) since

∂E
(
aS
)
/∂γ = ρσ2qD > 0 and ∂E

(
aD
)
/∂γ = −ρσ2qS

(
qD

(Iu−Id)
− 3+

√
21

2

)(
qD

(Iu−Id)
− 3−

√
21

2

)
>

0 since qD > 0 and qD ≤ (Iu − Id) < 3+
√
21

2
(Iu − Id).

Part 2. The expected best offer in market D varies with qS as follows:

∂E
(
aD
)

∂qS
= ρσ2

(
γ

(
ρσ2qD
rd − ru

− 1

3

(
ρσ2qD
rd − ru

)2
)
− (1− γ)

)

= −ρσ2

(
qD

Iu − Id)
− q∗D(γ)

)(
qD

Iu − Id
− q∗′D(γ)

)
. (21)

where q∗D(γ) =
(

3/2−
√

3
√
−1/γ + 7/4

)
(Iu − Id) and q∗

′
D(γ) =

(
3/2 +

√
3
√
−1/γ + 7/4

)
(Iu − Id).

Under our assumption, qD < q∗
′
D(γ). We can thus deduce that the best offer in mar-

ket D decreases with qD if qD < q∗D(γ). Note that, in particular, if γ = 0, then

∂E
(
aD
)
/∂qS = −ρσ2 < 0. If γ = 1, then ∂E

(
aD
)
/∂qS = 1

3
ρσ2 qD

(Iu−Id)

(
3− qD

(Iu−Id)

)
> 0

(by assumption qD ≤ (Iu − Id)).

Let us now turn to the analysis of the expected best offer in market S when qD varies:

∂E
(
aS
)

∂qD
= −ρσ2

(
qD

Iu − Id
− (1−√γ)

)(
qD

Iu − Id
− (1 +

√
γ)

)
. (22)

This implies that
∂E(aS)
∂qD

< 0 when qD < q∗∗D (γ) where q∗∗D (γ) =
(
1−√γ

)
(Iu − Id). We

can also notice that, if γ = 0, then
∂E(aS)
∂qD

= −ρσ2
(

qD
Iu−Id

− 1
)2

< 0. If γ = 1, then

∂E(aS)
∂qD

= −ρσ2 qD
Iu−Id

( qD
Iu−Id

− 2) > 0 since, by assumption, qD < (Iu − Id). Q.E.D.
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Proof of Corollary 2

Remind that aHS denotes the minimum ask price in the benchmark model in which

the total order flow is consolidated. From Ho and Stoll (1983), we know that:

E
(
aHS

)
=

2rd (qm + q−m) + ru (qm + q−m)

3
. (23)

Using Eq. (12) and (16) and the symmetry of the game, we deduce that the difference in

transactions costs between a fragmented or a consolidated order flow is:

∆TC = γ
(
E
(
aD,+

)
qD + E

(
aS,+

)
qS − E

(
aHS

)
(qD + qS)

)
+ (1− γ)

(
E
(
aD,−

)
qD − E

(
b
S,−
)
qS − E

(
aHS

)
(qD − qS)

)
. (24)

After straightforward computations the latter expression is equal to:

∆TC = ρσ2qS (Iu − Id)
(
−(γ + 1)

3

)
Pγ(

qD
Iu − Id

) (25)

where

Pγ(x) = x3 − 3x2 +
3

(γ + 1)
x+

(γ − 1)

(γ + 1)
(26)

for x ∈ [0, 1]. Let us analyze the sign of this cubic polynomial. First, note that:

P ′γ (x) = 3x2 − 6x+
3

(1 + γ)
= 3

(
x−

(
1−

√
γ

1 + γ

))(
x−

(
1 +

√
γ

1 + γ

))
(27)

Given that x ∈ [0, 1], then x−
(

1 +
√

γ
1+γ

)
< 0, and the sign of P ′γ (x) only depends on the

sign of
(
x−

(
1−

√
γ

1+γ

))
. Pγ is increasing if x <

(
1−

√
γ

1+γ

)
and is decreasing if x >(

1−
√

γ
1+γ

)
. Then, the local maximum is Pγ(1−

√
γ

1+γ
) =

γ(−1+2
√

γ
1+γ )

1+γ
. Straightforward

computations show that Pγ(1−
√

γ
1+γ

) ≤ 0 if γ ≤ 1
3

(with Pγ(1−
√

γ
1+γ

) = 0 if γ = 1
3
).

We therefore deduce that Pγ ≤ 0, i.e., ∆TC > 0 if γ ≤ 1
3
. If γ > 1

3
, then Pγ > 0, or,

equivalently, ∆TC < 0 if x ∈ [r1γ, r
2
γ] where Pγ(r

1
γ) = 0 = Pγ(r

2
γ). Note that if γ = 1,

then it is direct to show that P1 > 0 if x ∈ [0, (3−
√
3)

2
], or equivalently, ∆TC < 0 if

qD < (3−
√
3)

2
(Iu − Id). Q.E.D.
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